On the embedding of 2-concave Orlicz spaces into L¹

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Embedding of 2-concave Orlicz Spaces into L

In [K–S 1] it was shown that Ave π ( n ∑

متن کامل

Embedding Orlicz Sequence Spaces into C(α)

Let M be a non-degenerate Orlicz function such that there exist ǫ > 0 and 0 < s < 1 with ∑ ∞ i=1 M(ǫs)/M(s) < ∞. It is shown that the Orlicz sequence space hM is isomorphic to a subspace of C(ω). It is also shown that for any non-degenerate Orlicz function M , hM does not embed into C(α) for any α < ω .

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

Banach Spaces Embedding Into

Our main result in this paper is that a Banach space X embeds into L, if and only if l~(X) embeds into Lo; more generally if 1 _-< p < 2, X embeds into Lp if and only if lp (X) embeds into L~,.

متن کامل

Embedding the Ulam metric into l1

Edit distance is a fundamental measure of distance between strings, the extensive study of which has recently focused on computational problems such as nearest neighbor search, sketching and fast approximation. A very powerful paradigm is to map the metric space induced by the edit distance into a normed space (e. g., `1) with small distortion, and then use the rich algorithmic toolkit known fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1995

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-113-1-73-80